SQRT Function
Computes the square root of the input parameter. Input value can be a Decimal or Integer literal or a reference to a column containing numeric values. All generated values are non-negative.
Wrangle vs. SQL: This function is part of Wrangle, a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.
Basic Usage
Numeric literal example:
sqrt(25)
Output: Returns the square root of 25, which is 5
.
Column reference example:
sqrt(MyValue)
Output: Returns the square root of the values of the MyValue
column.
Syntax and Arguments
sqrt(numeric_value)
Argument | Required? | Data Type | Description |
---|---|---|---|
numeric_value | Y | string, decimal, or integer | Name of column or Decimal or Integer literal to apply to the function |
For more information on syntax standards, see Language Documentation Syntax Notes.
numeric_value
Name of the column or numeric literal whose values are used to compute the square root.
Note
Negative input values generate null output values.
Missing input values generate missing results.
Literal numeric values should not be quoted.
Multiple columns and wildcards are not supported.
Usage Notes:
Required? | Data Type | Example Value |
---|---|---|
Yes | String (column reference) or Integer or Decimal literal | 25 |
Examples
Tip
For additional examples, see Common Tasks.
Example - Pythagorean Theorem
The following example demonstrates how the POW
and SQRT
functions work together to compute the hypotenuse of a right triangle using the Pythagorean theorem.
POW
- XY. In this case, 10 to the power of the previous one. SeePOW Function.SQRT
- computes the square root of the input value. See SQRT Function.
The Pythagorean theorem states that in a right triangle the length of each side (x,y) and of the hypotenuse (z) can be represented as the following:
z2 = x2 + y 2
Therefore, the length of z can be expressed as the following:
z = sqrt(x2 + y 2 )
Source:
The dataset below contains values for x and y:
X | Y |
---|---|
3 | 4 |
4 | 9 |
8 | 10 |
30 | 40 |
Transformation:
You can use the following transformation to generate values for z2.
Note
Do not add this step to your recipe right now.
Transformation Name |
|
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | (POW(x,2) + POW(y,2)) |
Parameter: New column name | 'Z' |
You can see how column Z is generated as the sum of squares of the other two columns, which yields z2.
Now, edit the transformation to wrap the value computation in a SQRT
function. This step is done to compute the value for z, which is the distance between the two points based on the Pythagorean theorem.
Transformation Name |
|
---|---|
Parameter: Formula type | Single row formula |
Parameter: Formula | SQRT((POW(x,2) + POW(y,2))) |
Parameter: New column name | 'Z' |
Results:
X | Y | Z |
---|---|---|
3 | 4 | 5 |
4 | 9 | 9.848857801796104 |
8 | 10 | 12.806248474865697 |
30 | 40 | 50 |