Skip to main content

SQRT Function

Computes the square root of the input parameter. Input value can be a Decimal or Integer literal or a reference to a column containing numeric values. All generated values are non-negative.

Wrangle vs. SQL: This function is part of Wrangle, a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.

Basic Usage

Numeric literal example:

sqrt(25)

Output: Returns the square root of 25, which is 5.

Column reference example:

sqrt(MyValue)

Output: Returns the square root of the values of the MyValue column.

Syntax and Arguments

sqrt(numeric_value)

Argument

Required?

Data Type

Description

numeric_value

Y

string, decimal, or integer

Name of column or Decimal or Integer literal to apply to the function

For more information on syntax standards, see Language Documentation Syntax Notes.

numeric_value

Name of the column or numeric literal whose values are used to compute the square root.

Note

Negative input values generate null output values.

  • Missing input values generate missing results.

  • Literal numeric values should not be quoted.

  • Multiple columns and wildcards are not supported.

Usage Notes:

Required?

Data Type

Example Value

Yes

String (column reference) or Integer or Decimal literal

25

Examples

Tip

For additional examples, see Common Tasks.

Example - Pythagorean Theorem

The following example demonstrates how the POW and SQRT functions work together to compute the hypotenuse of a right triangle using the Pythagorean theorem.

  • POW- XY. In this case, 10 to the power of the previous one. SeePOW Function.

  • SQRT - computes the square root of the input value. See SQRT Function.

The Pythagorean theorem states that in a right triangle the length of each side (x,y) and of the hypotenuse (z) can be represented as the following:

z2 = x2 + y 2

Therefore, the length of z can be expressed as the following:

z = sqrt(x2 + y 2 )

Source:

The dataset below contains values for x and y:

X

Y

3

4

4

9

8

10

30

40

Transformation:

You can use the following transformation to generate values for z2.

Note

Do not add this step to your recipe right now.

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

(POW(x,2) + POW(y,2))

Parameter: New column name

'Z'

You can see how column Z is generated as the sum of squares of the other two columns, which yields z2.

Now, edit the transformation to wrap the value computation in a SQRT function. This step is done to compute the value for z, which is the distance between the two points based on the Pythagorean theorem.

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

SQRT((POW(x,2) + POW(y,2)))

Parameter: New column name

'Z'

Results:

X

Y

Z

3

4

5

4

9

9.848857801796104

8

10

12.806248474865697

30

40

50