Skip to main content

POW Function

Computes the value of the first argument raised to the value of the second argument.

Each argument can be a Decimal or Integer literal or a reference to a column containing numeric values.

Wrangle vs. SQL: This function is part of Wrangle, a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.

Basic Usage

Numeric literal example:

pow(10,3)

Output: Returns the value of 103, which is 1000.

Column reference example:

pow(MyValue,2)

Output: Returns the value of the MyValue column raised to the power of 2 (squared).

Syntax and Arguments

pow(base_numeric_value, exp_numeric_value)

Argument

Required?

Data Type

Description

base_numeric_value

Y

string, decimal, or integer

Name of column or Decimal or Integer literal that is the base value to be raised to the power of the second argument

exp_numeric_value

Y

string, decimal, or integer

Name of column or Decimal or Integer literal that is the power to which to raise the base value

For more information on syntax standards, see Language Documentation Syntax Notes.

base_numeric_value

Name of the column or numeric literal whose values are used as the bases for the exponential computation.

  • Missing input values generate missing results.

  • Literal numeric values should not be quoted.

  • Multiple columns and wildcards are not supported.

Usage Notes:

Required?

Data Type

Example Value

Yes

String (column reference) or Integer or Decimal literal

2.3

exp_numeric_value

Name of the column or numeric literal whose values are used as the power to which the base-numeric value is raised.

  • Missing input values generate missing results.

  • Literal numeric values should not be quoted.

  • Multiple columns and wildcards are not supported.

Usage Notes:

Required?

Data Type

Example Value

Yes

String (column reference) or Integer or Decimal literal

5

Examples

Tip

For additional examples, see Common Tasks.

Example - Exponential functions

The following example demonstrates how the exponential functions work together. These functions include the following:

Source:

rowNum

X

1

-2

2

1

3

0

4

1

5

2

6

3

7

4

8

5

Transformation:

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

EXP (X)

Parameter: New column name

'expX'

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

LN (expX)

Parameter: New column name

'ln_expX'

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

LOG (X)

Parameter: New column name

'logX'

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

POW (10,logX)

Parameter: New column name

'pow_logX'

Results:

In the following, (null value) indicates that a null value is generated for the computation.

rowNum

X

expX

ln_expX

logX

pow_logX

1

-2

0.1353352832366127

-2

(null value)

(null value)

2

-1

0.1353352832366127

-0.9999999999999998

(null value)

(null value)

3

0

1

0

(null value)

0

4

1

2.718281828459045

1

0

1

5

2

7.3890560989306495

2

0.30102999566398114

1.9999999999999998

6

3

20.085536923187668

3

0.47712125471966244

3

7

4

54.59815003314423

4

0.6020599913279623

3.999999999999999

8

5

148.41315910257657

5

0.6989700043360187

4.999999999999999

Example - Pythagorean Theorem

The following example demonstrates how the POW and SQRT functions work together to compute the hypotenuse of a right triangle using the Pythagorean theorem.

  • POW- XY. In this case, 10 to the power of the previous one. SeePOW Function.

  • SQRT - computes the square root of the input value. See SQRT Function.

The Pythagorean theorem states that in a right triangle the length of each side (x,y) and of the hypotenuse (z) can be represented as the following:

z2 = x2 + y 2

Therefore, the length of z can be expressed as the following:

z = sqrt(x2 + y 2 )

Source:

The dataset below contains values for x and y:

X

Y

3

4

4

9

8

10

30

40

Transformation:

You can use the following transformation to generate values for z2.

Note

Do not add this step to your recipe right now.

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

(POW(x,2) + POW(y,2))

Parameter: New column name

'Z'

You can see how column Z is generated as the sum of squares of the other two columns, which yields z2.

Now, edit the transformation to wrap the value computation in a SQRT function. This step is done to compute the value for z, which is the distance between the two points based on the Pythagorean theorem.

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

SQRT((POW(x,2) + POW(y,2)))

Parameter: New column name

'Z'

Results:

X

Y

Z

3

4

5

4

9

9.848857801796104

8

10

12.806248474865697

30

40

50