Skip to main content

MAXDATE Function

Computes the maximum value found in all row values in a Datetime column.

If a row contains a missing or null value, it is not factored into the calculation. If no Datetime values are found in the source column, the function returns a null value.

Wrangle vs. SQL: This function is part of Wrangle, a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.

Basic Usage

maxdate(myDates)

Output: Returns the maximum Datetime value from the myDates column.

Syntax and Arguments

maxdate(function_col_ref)

Argument

Required?

Data Type

Description

function_col_ref

Y

string

Name of column to which to apply the function

For more information on syntax standards, see Language Documentation Syntax Notes.

function_col_ref

Name of the column the Datetime values of which you want to calculate the maximum date.

  • Column must contain Datetime values.

  • Literal values are not supported as inputs.

  • Multiple columns and wildcards are not supported.

Usage Notes:

Required?

Data Type

Example Value

Yes

Datetime (column reference)

datTransactions

Examples

Tip

For additional examples, see Common Tasks.

This example shows how you can use the following functions to perform some analysis on Datetime columns.

  • MINDATE - Calculates the earliest (minimum) date from a column of Datetime column values. See MINDATE Function.

  • MAXDATE - Calculates the latest (maximum) date from a column of Datetime column values. See MAXDATE Function.

  • MODEDATE - Calculates the most frequent (mode) date from a column of Datetime column values. See MODEDATE Function.

Source:

The following dataset contains a set of three available dates for a set of classes:

classId

Date1

Date2

Date3

c001

2020-03-09

2020-03-13

2020-03-17

c002

2020-03-09

2020-03-06

2020-03-21

c003

2020-03-09

2020-03-16

2020-03-23

c004

2020-03-09

2020-03-23

2020-04-06

c005

2020-03-09

2020-04-09

2020-05-09

c006

2020-03-09

2020-08-09

2021-01-09

Transformation:

To compare dates across multiple columns, you must consolidate the values into a single column. You can use the following transformation to do so:

Transformation Name

Unpivot columns

Parameter: Columns

Date1,Date2,Date3

Parameter: Group size

1

The dataset is now contained in three columns, with descriptions listed below:

classId

key

value

Same as previous.

DateX column identifier

Corresponding value from the DateX column.

You can use the following to rename the value column to eventDates:

Transformation Name

Rename columns

Parameter: Option

Manual rename

Parameter: Column

value

Parameter: New column name

eventDates

Using the following transformations, you can create new columns containing the min, max, and mode values for the Datetime values in eventDates:

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

MINDATE(eventDates)

Parameter: New column name

earliestDate

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

MAXDATE(eventDates)

Parameter: New column name

latestDate

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

MODEDATE(eventDates)

Parameter: New column name

mostFrequentDate

Results:

classId

key

eventDates

mostFrequentDate

latestDate

earliestDate

c001

Date1

2020-03-09

2020-03-09

2021-01-09

2020-03-06

c001

Date2

2020-03-13

2020-03-09

2021-01-09

2020-03-06

c001

Date3

2020-03-17

2020-03-09

2021-01-09

2020-03-06

c002

Date1

2020-03-09

2020-03-09

2021-01-09

2020-03-06

c002

Date2

2020-03-06

2020-03-09

2021-01-09

2020-03-06

c002

Date3

2020-03-21

2020-03-09

2021-01-09

2020-03-06

c003

Date1

2020-03-09

2020-03-09

2021-01-09

2020-03-06

c003

Date2

2020-03-16

2020-03-09

2021-01-09

2020-03-06

c003

Date3

2020-03-23

2020-03-09

2021-01-09

2020-03-06

c004

Date1

2020-03-09

2020-03-09

2021-01-09

2020-03-06

c004

Date2

2020-03-23

2020-03-09

2021-01-09

2020-03-06

c004

Date3

2020-04-06

2020-03-09

2021-01-09

2020-03-06

c005

Date1

2020-03-09

2020-03-09

2021-01-09

2020-03-06

c005

Date2

2020-04-09

2020-03-09

2021-01-09

2020-03-06

c005

Date3

2020-05-09

2020-03-09

2021-01-09

2020-03-06

c006

Date1

2020-03-09

2020-03-09

2021-01-09

2020-03-06

c006

Date2

2020-08-09

2020-03-09

2021-01-09

2020-03-06

c006

Date3

2021-01-09

2020-03-09

2021-01-09

2020-03-06