Skip to main content

DEGREES Function

Computes the degrees of an input value measuring the radians of an angle. The value can be a Decimal or Integer literal or a reference to a column containing numeric values.

  • Input units are in radians.

  • You can convert from degrees to radians. For more information, see RADIANS Function.

Wrangle vs. SQL: This function is part of Wrangle, a proprietary data transformation language. Wrangle is not SQL. For more information, see Wrangle Language.

Basic Usage

Numeric literal example:

round(degrees(1.0000),4)

Output: Returns the computation in degrees of 1.0000 radians, which is 57.2728, rounded to 4 decimals.

Column reference example:

degrees(myRads)

Output: Returns the conversion of the values in MyRads column to degrees.

Syntax and Arguments

degrees(numeric_value)

Argument

Required?

Data Type

Description

numeric_value

Y

string, decimal, or integer

Name of column, Decimal or Integer literal, or function returning those types to apply to the function

For more information on syntax standards, see Language Documentation Syntax Notes.

numeric_value

Name of the column, Integer or Decimal literal, or function returning that data type to apply to the function.

  • Missing input values generate missing results.

  • Literal numeric values should not be quoted. Quoted values are treated as strings.

  • Multiple columns and wildcards are not supported.

Usage Notes:

Required?

Data Type

Example Value

Yes

String (column reference) or Integer or Decimal literal

3.14

Examples

Sugerencia

For additional examples, see Common Tasks.

Example - DEGREES and RADIANS functions

This example illustrates to convert values from one unit of measure to the other.

Functions:

Item

Description

DEGREES Function

Computes the degrees of an input value measuring the radians of an angle. The value can be a Decimal or Integer literal or a reference to a column containing numeric values.

RADIANS Function

Computes the radians of an input value measuring degrees of an angle. The value can be a Decimal or Integer literal or a reference to a column containing numeric values.

ROUND Function

Rounds input value to the nearest integer. Input can be an Integer, a Decimal, a column reference, or an expression. Optional second argument can be used to specify the number of digits to which to round.

Source:

In this example, the source data contains information about a set of isosceles triangles. Each triangle is listed in a separate row, with the listed value as the size of the non-congruent angle in the triangle in degrees.

You must calculate the measurement of all three angles of each isosceles triangle in radians.

triangle

a01

t01

30

t02

60

t03

90

t04

120

t05

150

Transformation:

You can convert the value for the non-congruent angle to radians using the following:

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

ROUND(RADIANS(a01), 4)

Parameter: New column name

'r01'

Now, calculate the value in degrees of the remaining two angles, which are congruent. Since the sum of all angles in a triangle is 180, the following formula can be applied to compute the size in degrees of each of these angles:

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

(180 - a01) / 2

Parameter: New column name

'a02'

Convert the above to radians:

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

ROUND(RADIANS(a02), 4)

Parameter: New column name

'r02'

Create a second column for the other congruent angle:

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

ROUND(RADIANS(a02), 4)

Parameter: New column name

'r03'

To check accuracy, you sum all three columns and convert to degrees:

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

ROUND(RADIANS(a02), 4)

Parameter: New column name

'checksum'

Results:

After you delete the intermediate columns, you see the following results and determine the error in the checksum is acceptable:

triangle

a01

r03

r02

r01

checksum

t01

30

1.3095

1.3095

0.5238

179.9967

t02

60

1.0476

1.0476

1.0476

179.9967

t03

90

0.7857

0.7857

1.5714

179.9967

t04

120

0.5238

0.5238

2.0952

179.9967

t05

150

0.2619

0.2619

2.6190

179.9967