Skip to main content

EXAMPLE - Trigonometry Arc Functions

This example illustrates how to apply the inverse trigonometric (Arc) functions to your transformations.

Functions:

Item

Description

ASIN Function

For input values between -1 and 1 inclusive, this function returns the angle in radians whose sine value is the input. This function is the inverse of the sine function. The value can be a Decimal or Integer literal or a reference to a column containing numeric values.

ACOS Function

For input values between -1 and 1 inclusive, this function returns the angle in radians whose cosine value is the input. This function is the inverse of the cosine function. The value can be a Decimal or Integer literal or a reference to a column containing numeric values.

ATAN Function

For input values between -1 and 1 inclusive, this function returns the angle in radians whose tangent value is the input. This function is the inverse of the tangent function. The value can be a Decimal or Integer literal or a reference to a column containing numeric values.

Also:

Item

Description

ROUND Function

Rounds input value to the nearest integer. Input can be an Integer, a Decimal, a column reference, or an expression. Optional second argument can be used to specify the number of digits to which to round.

DEGREES Function

Computes the degrees of an input value measuring the radians of an angle. The value can be a Decimal or Integer literal or a reference to a column containing numeric values.

Note

These functions are valid over specific ranges.

The following functions are computed using the above functions.

  • Arccotangent. Computed using ATAN function. See below.

  • Arcsecant. Computed using ACOS function. See below.

  • Arccosecant. Computed using ASIN function. See below.

Source:

In the following sample, input values are in radians. In this example, all values are rounded to two decimals for clarity.

Y

-1.00

-0.75

-0.50

0.00

0.50

0.75

1.00

Transformation:

Arcsine:

Valid over the range (-1 <= Y <= 1)

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

round(degrees(asin(Y)), 2)

Parameter: New column name

'asinY'

Arccosine:

Valid over the range (-1 <= Y <= 1)

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

round(degrees(acos(Y)), 2)

Parameter: New column name

'acosY'

Arctangent:

Valid over the range (-1 <= Y <= 1)

Transformation Name

New formula

Parameter: Formula type

Single row formula

Parameter: Formula

round(degrees(atan(Y)), 2)

Parameter: New column name

'atanY'

Arccosecant:

This function is valid over a set of ranged inputs, so you can use a conditional column for the computation.

Transformation Name

Conditional column

Parameter: Condition type

if...then...else

Parameter: If

(Y <= -1) || (Y >= 1)

Parameter: Then

round(degrees(asin(divide(1, Y))), 2)

Parameter: New column name

'acscY'

Arcsecant:

Same set of ranged inputs apply to this function.

Transformation Name

Conditional column

Parameter: Condition type

if...then...else

Parameter: If

(Y <= -1) || (Y >= 1)

Parameter: Then

round(degrees(acos(divide(1, Y))), 2)

Parameter: New column name

'asecY'

Arccotangent:

For this function, the two different ranges of inputs have different computations, so an else condition is added to the transformation.

Transformation Name

Conditional column

Parameter: Condition type

if...then...else

Parameter: If

Y > 0

Parameter: Then

round(degrees(atan(divide(1, Y))), 2)

Parameter: Else

round(degrees(atan(divide(1, Y)) + pi()), 2)

Parameter: New column name

'acotY'

Results:

Y

acotY

asecY

acscY

atanY

acosY

asinY

-1.00

-41.86

180.00

-90.00

-45.00

180.00

-90.00

-0.75

-49.99

null

null

-37.00

139.00

-49.00

-0.50

-60.29

null

null

-27.00

120.00

-30.00

0.00

null

null

null

0.00

90.00

0.00

0.50

63.44

null

null

27.00

60.00

30.00

0.75

53.13

null

null

37.00

41.00

49.00

1.00

45.00

0.00

90.00

45.00

0.00

90.00